Ionospheric ELF/ULF Generation Without Needing Electrojets

Dennis Papadopoulos^{1,2} C.L. Chang², T. Wallace², I. Doxas² B. Eliasson¹

University of Maryland¹

BAE Systems-AT²

Invited Presentation

15th Annual RF Ionospheric Interactions Workshop

April 21, 2009

ELF/ULF – GROUND TRANSMITTER ISSUES

• Why: Penetrate deep into the ground and seawater Couple to the earth-ionosphere waveguide and propagate with small attenuation

Problems : Low Efficiency Coupling $(D/\lambda)^2$; No tunability ; Limited Bandwidth Cannot use VED

•HF-PLASMA CURRENT DRIVE - USE ABSORPTION OF MODULATED HF POWER IN THE IONOSPHERE TO DRIVE LOW FREQUENCY AC CURRENTS IN THE IONOSPHERE

•EARLY (1973-1975) CONCEPT- PONDEROMOTIVE FORCE CURRENT DRIVE •THRESHOLD - EITHER VERY OBLIQUE HEATERS OR TOO MUCH POWER •ALTERNATIVE (1974) – MODULATE EJET CONDUCTIVITY

• PEJ ANTENNA DEMONSTRATED IN SURA, TROMSO, HIPAS, HAARP PEJ ANTENNA DRAWBACKS – EJET AVAILABILITY, HEATER LOCATION, NEED FOR LONG PROPAGATION

LOW FREQUENCY CURRENT DRIVE

- THEORY AND HAARP EXPERIMENTS CONFIRMING GENERATION AND PROPAGATION OF LOW FREQUENCY WAVES (.1-20 Hz) BY COLLISIONLESS IONOSPHERIC CURRENT DRIVE
 - FUTURE TESTS AND CONCEPTS TO DETERMINE THE UPPER FREQUENCY
 - POSSIBLE TESTS IN ARECIBO (WHEN ?)
- THEORY AND SIMULATIONS OF NOVEL CONCEPT OF CURRENT DRIVE BY CONVENTIONAL HED
 - ARTIFICIALLY CONSTRUCTED ELECTROJET (ACE)
 - PULSED ARTIFICIALLY CONSTRUCTED ELECTROJET (PACE)

Ground

The Plasma Physics of the PEJ

PEJ ELF/ULF Generation Tests

PEJ ULF Signal Propagation Evanescent Mode (1 Hz)

Gakona

Juneau - 800 km

- 28 April, 2007 UTC 05:01:00 05:05:45
- HAARP at 2.88 MW and 3.3 MHz
- Detected 1 Hz & 3 Hz peaks at Juneau (30 dB loss)
- B~1/R² wave evanescent (frequencies below few Hz)

PEJ ULF Signal Propagation Propagating Mode (15 Hz)

Gakona

Chiniak – 670 km

Clear 15 Hz peak can be seen at both sites EW Amplitudes: Gakona: 0.25 pT Chiniak: 0.07 pT

Propagating mode 3 dB attenuation

PEJ ULF Evanescent vs. Propagating Modes

SAW DEMETER Detection

Frequency .2 Hz Closest distance 80 km Detection time 25 sec Detection distance 150 km Maximum E 10 mV/m Estimated power ~ kW 1.5 pT on the ground

SEPTEMBER 28, 2008

Ionospheric Current Drive (ICD)

Weak F-Layer (FoF2 <~ 4.0 MHz) Results in Weaker Waves

Propagation and Penetration to Ground

Optimal Conditions for ICD vs. PEJ

6

10

Ion?Png v. 1.1.02

5

Far Measurement Sites

Early Experiments (2006-2007)

Recent Experiments (2008-2009)

Early Tests

ULF vs. 1 kHz Amplitude [April 27-May 6, 2006]

Recent Tests

Lake Ozette vs. Gakona Detections

Example .5 Hz

2.75-3.8Hz-Omode-square : [2008-12-12 02:30:00 to 2008-12-12 02:59:30]

SA Waves – Ionospheric Alfven Resonator (IAR)

IAR Excitation by ICD

IAR Conditions

Msonic Wave Injection

24-Apr-2007 06:49:43-06:54:57 3.2-O-0.4-0.1Hz, m=O, f=0.1Hz, t=06:47:30-06:59:30

Pyddiachyi

SAW and Msonic Detection by DEMETER

UMCP-Stanford-BAE

Example of F-Region Msonic Generation Detected by the Demeter satellite

O-mode at 4.4 MHz HAARP at 3.5 MW modulated at .1 Hz between 6:47:30 and 6:59:30 UT

No ULF detection on the ground - .1 Hz detection at Demeter between 6:51:30 and 6:53:00

F Region Heating

HF transmitter

Artificially Created Electrojet (ACE) Pulsed Artificially Created Ejet (PACE)

- Spin-off of ICD HAARP Tests for ELF/ULF Generation
- Novel concept of efficient ELF/ULF generation for Navy and other applications –

CONCEPT CARTOON

CW antenna field, day and nighttime conditions Profiles of B (nT), j (nA/m²) and E (mV/m)

Currents at z = 92 km, CW antenna field

Induced currents in the lower ionosphere

Estimates: Assume ∆y≈100 km -> I_v≈60 A, I_vL≈6x10⁵ A-m, I_H≈400 A, I_HL≈4x10⁷ A-m

Current closure through field aligned currents carried by helicons

Get .1 nT fields at Mm distance

Daytime

Nighttime

Nighttime

Pulsed antenna field, nighttime conditions

Profiles of B (nT), j (nA/m²) and E (mV/m)

---- Daytime, - - - Nighttime

Induced Pulsed Ionospheric Current

Induced Pulsed Ionospheric Current

Getting nT field at 75 km

 $B(75km) = (IL/5 \times 10^{6} A - m)(\delta/75km)$

Skin depth km like Conductivity dependent

Use pulsed antenna sneak-through concept

75 km

Sneak-through Concept

Sneak-through Concept

PACE – SUMMARY STATUS

SNEAK-THROUGH TEST

DARPA Seedling awarded for Sneakthrough test . Probably May.

Reconstruction of the EDF

~ 0.5 million Kelvin

Electron temperature $<3500 \text{ K} \rightarrow$ Bulk electron energy <0.3 eV

2D Simulations Show Far Lateral Propagation

8000km

Sinusoidal sweep

2D Simulations Show Far Lateral Propagation

8000km

Sinusoidal sweep

Parameter Study Shows that Strong F-layer is Critical for Far Propagation

- Four frequencies: 3.0, 4.0, 6.0 and 8.0 MHz.
- For FoF2 >= 6MHz strong waves in far field
 For FoF2 <= 4MHz far field very weak

• Limit experiments to FoF2 > 4.0MHz

Weaker F-Layer Gives Weaker Waves

Weaker F-Layer Gives Weaker Waves

Near Earth LF Waveguides

Magnetosonic Alfven Wave (compressional)

PHYSICS – TRIGGERED ULF

ULF Generation by Ejet Modulation

• Ejet modulation cannot drive **b** field parallel to ambient **B**. This type of modulation can create only SA waves. The waves cannot propagate laterally since they are evanescent in the Earth-Ionosphere Waveguide and do not couple to the Alfvenic Duct

• SA waves can be detected: (a) In the near zone below the heated spot and (b) By satellites over-flying the heated spot but confined to the magnetic flux tube that spans the heated spot.

2.75-6.4Hz-Omode-square : [2008-12-10 06:30:00 to 2008-12-10 06:54:30] 2.75 MHz, full power, beam at 14 off zenith, 202 azimuth,

2.75-3.8Hz-Omode-square : [2008-12-12 02:30:00 to 2008-12-12 02:59:30] 2.75 MHz, full power, beam at 14 off zenith, 202 azimuth,

12

14

16

18

20

10

Frequency (Hz)

-7

-2.5

-3

-3.5

2

4

6

8

2.75-1.4Hz-Omode-square : [2008-12-12 05:00:00 to 2008-12-12 05:29:30] 2.75 MHz, full power, beam at 14 off zenith, 202 azimuth,

2.75-3.8Hz-Omode-square : [2008-12-12 02:30:00 to 2008-12-12 02:59:30] 2.75 MHz, full power, beam at 14 off zenith, 202 azimuth,

2.75-3.8Hz-Omode-square : [2008-12-12 02:30:00 to 2008-12-12 02:59:30] 2.75 MHz, full power, beam at 14 off zenith, 202 azimuth,

2.75-6.4Hz-Omode-square : [2008-12-10 06:30:00 to 2008-12-10 06:54:30] 2.75 MHz, full power, beam at 14 off zenith, 202 azimuth,

2.75-6.4Hz-Omode-square : [2008-12-10 06:30:00 to 2008-12-10 06:54:30] 2.75 MHz, full power, beam at 14 off zenith, 202 azimuth,

2.75-3.8Hz-Omode-square : [2008-12-12 02:30:00 to 2008-12-12 02:59:30] 2.75 MHz, full power, beam at 14 off zenith, 202 azimuth,

2.75-3.8Hz-Omode-square : [2008-12-12 02:30:00 to 2008-12-12 02:59:30] 2.75 MHz, full power, beam at 14 off zenith, 202 azimuth,

2.75-1.4Hz-Omode-square : [2008-12-12 05:00:00 to 2008-12-12 05:29:30] 2.75 MHz, full power, beam at 14 off zenith, 202 azimuth,

2.75-1.4Hz-Omode-square : [2008-12-12 05:00:00 to 2008-12-12 05:29:30] 2.75 MHz, full power, beam at 14 off zenith, 202 azimuth,

F-Region Heating-Current Drive

Ĺ

Response time .5-1 sec

Drive AC Diamagnetic Current Loop

$$\Delta J = \frac{B \times \nabla \delta p}{B^2} \exp(i\omega t)$$

September 2007 Campaign

ULF-EW vs. 1 kHz at Gakona [September 24-October 1, 2007]

Two distinct groups: (1) ULF amp. ≈ kHz amp. along dashed line – electrojet mod.; (2) ULF amp. >> kHz amp. at ULF 2 pT or less

PACE E-Region Simulation – B. Eliason & DP

Estimates: Assume ∆y≈100 km -> I_v≈60 A, I_vL≈6x10⁵ A-m, I_H≈400 A, I_HL≈4x10⁷ A-m

Current closure through field aligned currents carried by helicons

Loading Unloading Comparison

•Lower intensity and flipping of currents and E-fields

• Prominent oblique helicon structure

W_B≈.5 mJ/m . If ∆y≈100 km W_{total}≈ 50 J P≈ 50/.05≈100 W

